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Figure S1 (related to Figure 1). H3K27 Methylation Antibody Specificity and Number of
Sequencing Reads Across ChIP-seq and mRNA-seq Replicates

(A) The specificity of antibodies against different degrees of H3K27 methylation was tested via
dot-blot assay (left panel) and immunoprecipitated ESC lysates (right panel).

(B) Number of unique sequencing reads in individual sample replicates of ChIP-seq (left panel)

and mRNA-seq (right panel).
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Figure S2 (related to Figure 1). Distinct H3K27 Methylation States Are Enriched at
Functionally Defined Genomic Regulatory Regions

(A) Bar plot showing percentage of H3K27me3, H3K27me2, and H3K27mel peaks distributed
in promoter, intragenic, and intergenic regions.

(B) Read count per million mapped reads of H3K27me3, H3K27me?2, and H3K27mel from 2Kb
upstream of TSS to 2Kb downstream of transcription end site (TES).

(C) and (D) Averaged normalized tag density profiles of H3K27me3 (C) or H3K27me2 (D) at
transcriptional start site (TSS) (blue line) versus prospective DNase hypersensitive sites (DHS)
(red line) enhancer regions.

(E) Percentage of co-occupancy of H3K4me3 and H3K27me3 (left panel), H3K27me2 (middle
panel), and H3K27mel(right panel) at TSS regions.

(F) Percentage of co-occupancy of H3K4mel and H3K27me3 (left panel), H3K27me?2 (middle
panel), and H3K27mel (right panel) at intergenic regions.

(G) through (I) Gene ontology (GO) based on biological processes for genes occupied by
H3K27me3 (G), H3K27me2 (H), or H3K27mel (I) at TSS regions divided by lower expression
(RPKM<1) or higher expression (RPKM>1).
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Figure S3 (related to Figure 1). Ezh2 Preferentially Occupies H3K27me3 Regions

(A) Scatter plots correlation between Ezh2 binding and H3K27me3 occupancy (left panel) and
Ezh2 binding and H3K27me2 occupancy (right panel). The R coefficient is determined by
Pearson correlation. The p-values are determined by Wilcoxon rank test.

(B) List of top 25% 6-mer sequences within H3K27me3- and H3K27me2-enriched genomic
regions (left panel) and total nucleotide count of these 6-mers (right panel)

(C) Top 10 DNA-binding motifs within H3K27me3- or H3K27me2-enriched promoter regions.
(D) Transition of H3K27mel across H3K4me3"" promoters and H3K4mel " enhancers in ESCs
to different H3K27 states during early ESC differentiation (ESC-24h).

(E) Box plot of H3K27mel1 peak intensities for +5Kb intergenic genomic regions surrounding
the summit of each peak at two different ESC developmental stages. P-values were determined
by Student’s t-test.
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Figure S4 (related to Figure 2). Mass Spectrometry Analysis of H3K27 Methylation in WT
and Y641F ESCs and Characterization of Two Additional Y641F ESC Clones

(A) Levels of H3K27mel (left panel), H3K27me2 (middle panel), and H3K27me3 (right panel)
in WT and Y641F ESCs as determined by LC-MS analysis.

(B) Western blot analysis of Ezh2, Pou5fl and H3K27 methylation in two independent Ezh2-
Y641F mutant ESCs (Y641F-E13, Y641F-F22).

(C) Box plot of H3K27mel peak intensities for genomic regions surrounding (=5Kb) TSS in WT
and Y641F ESCs. P-values were determined by Student’s t-test.
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Figure S5 (related to Figure 5). Y641F ESCs Demonstrate a Propensity for Neural Fate
Acquisition upon Differentiation

(A) Gene Set Enrichment Analysis (GSEA) for neural stem cell (left panel) and mesodermal
(right panel) genes among Y641F and WT ESCs.

(B) RNA expression fold-change of Pou5f1, Sox1, and Pax6 in WT and Y641F ESCs cultured
for 2 days in either ESC pluripotency or N2B27 media. P < 0.05 (n=3).

(C) Histological H&E staining of WT and Y641F ESCs-derived teratomas documenting
ectodermal (left panel), mesodermal (middle panel, stars), and endodermal (right panel)
structures. Arrowheads, neural epithelium; stars, skeletal muscle; Arrows: respiratory epithelium.

(D) RNA expression fold-change of T7GF-f1, neural (Sox1, Hes5, Ngnl), mesodermal (7, Myog,
Myh3), and endodermal (Gata4, Gata6, Sox17) transcripts in of WT and Y641F ESCs-derived

teratomas.
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Figure S6 (related to Figure 6). TGF-3 Pathway Repression Occurs during Early ESC

Differentiation

(A) Pathway KEGG analysis associated with genes with >1.5-fold-decrease in RNA expression
in ESC-24h compared to WT ESCs.

(B) RNA expression fold-change (RPKM) from 3 replicates of RNA-seq for TGF-{ family

members between WT and ESC-24h.

Supplemental Tables

Table S1 Summary of RNA seq and reagents

Table S2 Gene list and GO analysis of H3K27me2 and me3 in the ESC-WT TSS sites
(related to Figure S2)

Table S3 Gene list and GO analysis of H3K27me2 and me3 occupied sites in ESC-WT and
ESC-24h cells (related to Figure 1)

Table S4 Gene list and GO analysis of sites that reduced me2 in Y641F- increased ac in
ESC-24h and sites that increased Y641F and ESC-24h (related to Figure 3 and 4)

Table S5 GO and Kegg pathway analysis of WT vs Y641F RNA expression in ES-serum,
ES-2i, EBS, and EB13 (related to Figure S and 6)

Supplemental Movie 1 (related to Figure 5)
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